Selective Targeting of Brain Tumors with Gold Nanoparticle-Induced Radiosensitization

نویسندگان

  • Daniel Y. Joh
  • Lova Sun
  • Melissa Stangl
  • Ajlan Al Zaki
  • Surya Murty
  • Phillip P. Santoiemma
  • James J. Davis
  • Brian C. Baumann
  • Michelle Alonso-Basanta
  • Dongha Bhang
  • Gary D. Kao
  • Andrew Tsourkas
  • Jay F. Dorsey
چکیده

Successful treatment of brain tumors such as glioblastoma multiforme (GBM) is limited in large part by the cumulative dose of Radiation Therapy (RT) that can be safely given and the blood-brain barrier (BBB), which limits the delivery of systemic anticancer agents into tumor tissue. Consequently, the overall prognosis remains grim. Herein, we report our pilot studies in cell culture experiments and in an animal model of GBM in which RT is complemented by PEGylated-gold nanoparticles (GNPs). GNPs significantly increased cellular DNA damage inflicted by ionizing radiation in human GBM-derived cell lines and resulted in reduced clonogenic survival (with dose-enhancement ratio of ~1.3). Intriguingly, combined GNP and RT also resulted in markedly increased DNA damage to brain blood vessels. Follow-up in vitro experiments confirmed that the combination of GNP and RT resulted in considerably increased DNA damage in brain-derived endothelial cells. Finally, the combination of GNP and RT increased survival of mice with orthotopic GBM tumors. Prior treatment of mice with brain tumors resulted in increased extravasation and in-tumor deposition of GNP, suggesting that RT-induced BBB disruption can be leveraged to improve the tumor-tissue targeting of GNP and thus further optimize the radiosensitization of brain tumors by GNP. These exciting results together suggest that GNP may be usefully integrated into the RT treatment of brain tumors, with potential benefits resulting from increased tumor cell radiosensitization to preferential targeting of tumor-associated vasculature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radiosensitization of breast cancer cells using AS1411 aptamer-conjugated gold nanoparticles

Introduction: A main choice for cancer treatment is radiotherapy. But, the radiotherapy disadvantage is damages caused by radiation given to normal tissues/organs surrounding cancer. One way to avoid this is via increasing radiosensitization of cancer cells. Gold nanoparticles (GNPs) have shown sensitizing effect on cancer cells by enhancing their absorbed dose. Unlike earlier ...

متن کامل

Numerical study of thermal dynamics of gold nanoparticles in laser-induced hyperthermia therapy

Damage of the normal tissue is a serious concenrn in cancer treatment. Hyperthermia by laserhas been considered as a safe cancer treatments methods with lower harmful effects on normaltissues. Using nanoparticles in cancer treatment has improved laser therapy, which is based ona selective cell targeting method to localize cell damages. Metallic nanoparticles such as gold,silver, and copper have...

متن کامل

Gold nanoparticle-induced sonosensitization enhances the antitumor activity of ultrasound in colon tumor-bearing mice

Introduction: Light-driven cancer therapy strategies (e.g. photodynamic therapy and photothermal therapy) have undergone remarkable progress in recent years, but they still suffer from a serious drawback of limited penetration depth of light in tissue. As a non-invasive and non- ionizing radiation, ultrasound can be focused remotely, transferring acoustic energy deep in the bo...

متن کامل

Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles

BACKGROUND This follow-up study aims to determine the physical parameters which govern the differential radiosensitization capacity of two tumor cell lines and one immortalized normal cell line to 1.9 nm gold nanoparticles. In addition to comparing the uptake potential, localization, and cytotoxicity of 1.9 nm gold nanoparticles, the current study also draws on comparisons between nanoparticle ...

متن کامل

Iron-gold (Fe2O3@Au) core-shell nano-theranostic for magnetically targeted photothermal therapy under magnetic resonance imaging guidance

Introduction: Photothermal therapy (PTT) is a nanotechnology-assisted cancer hyperthermia approach in which the interaction between laser light and plasmonic nanoparticles generates a localized heating for thermoablation of the tumor. Recent efforts in the area of PTT follow two important aims: (i) exploitation of targeting strategies for preferential accumulation of plasmonic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013